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Abstract. Formulae for calculating the electric field produced by microscopic impurities in
perovskite-type oxides have been derived. By way of illustration, dipole and monopole impurities
in KTaO3, YBa2Cu3O6 and La2CuO4 were considered. It was found that the lattice polarization
leads to a gigantic enhancement of the interaction between dipole impurities that can explain
many phenomena in polar lattices.

1. Introduction

Strongly polarizable lattices often show intriguing features. So, perovskite-type oxides have
revealed high-temperature superconductivity in parallel with the long-explored ferroelectric
property. The same phenomenon was then also discovered in the polar lattice of fullerites.

When studying polar lattices, it was detected that even a very small concentration of
off-centre impurities in them can lead to phase transition phenomena [1, 2] and to a drastic
change in the critical temperature of superconductivity. The interaction between microscopic
impurities is seemingly weakened just due to the high lattice polarizability. However, in
fact, the reverse is sometimes true. It was rigorously proved in [3–5] that, in the simple-
cubic lattice, the interaction between the two widely separated microscopic dipoles is, in
reality, [(ε +2)/3]2 times stronger than is given by the Coulomb law written for continuous
media with the dielectric constantε. Thus, one can expect that, at largeε, the interaction
between the dipoles will be sufficiently enhanced.

The aim of the present paper is to generalize the result obtained earlier for the simple-
cubic lattice to more complex lattices of perovskite-type oxides. The results, which we
shall give in sections 2 and 3 are of common character irrespective of the nature of the
microscopic dipoles. They can provide the basis for the explanation of dissimilar phenomena
which will be briefly discussed in section 4.

2. Theory

Let us consider a polar crystal consisting of microscopic impurities. The coordinates of the
impurities can be arbitrary. In particular, they can occupy lattice sites substituting for ions
in the host lattice. They can be atomic vacancies or complexes of microscopic defects.

We shall consider the polar crystal to consist of polarizable sites. For simplicity, as a
first step, we shall study polarization in this lattice with the use of the point-polarizable-ion
model. Our choice of the model stems from the possibility of achieving analytical results
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within this approach. Moreover, this model can be readily generalized to the case when
partial covalent bonding as well as atomic size are taken into account.

The site’s polarizability may include both the electronic and the ionic contributions.
The latter can describe slight ion shifts from the atomic sites. If the ion displacements are
large, we shall treat them in another way. This is expected in the nearest vicinity of the
microscopic impurities. The real change in the ion positions will be taken into account in
this case.

As a first stage, let us consider the case when the ion displacements are small. In this
case, the electric fields produced by the displacements are the same as the electric field of
point dipoles located at the ion sites. Thus, the local electric field at theith site of the
nth cell can be written as the sum of the unscreened fielde0

ni produced by the microscopic
impurities and a field produced by polarization [6]:

eni(r) = e0
ni(r) − V

∑
mj

Φni,mj (r) · Pmj (1)

whereV is the volume of the unit cell,Pmj is the vector of the polarization on thej th site
in the mth cell andΦni,mj is the tensor of the dipole–dipole interaction

Φni,mj = (I − 3R̂ni,mjR̂ni,mj )/R
3
ni,mj . (2)

Here I is the identity matrix andRni,mj (r) = rni − rmj + r, rni is the radius vector of the
ith site in thenth cell given byrni = r0i + Rn, Rn is the radius vector of thenth cell and
R̂ = R/R is the unit vector directed along the vectorR.

Within the linear approximation, we have

Pmj = 1

V Λ0
j · emj (0) (3)

whereΛ0
j is the tensor of the atomic polarizabilities.

If the unscreened fielde0
ni is determined by the point dipoled0j located at the point

r0j + r′, then

e0
ni(r) = −Φni,0j (r − r′) · d0j . (4)

In the case when the unscreened field is produced by the point chargeq0j ,

e0
ni(r) = Wni,0j (r − r′)q0j (5)

where

Wni,0j (r) = r + rni − r0j

|r + rni − r0j |3 . (6)

Equations (1)–(4) allow one to find the electrostatic field produced by the microscopic
impurities.

To solve these equations, let us introduce the following quantities [7]:

ei (k, r) =
∑

n

exp[ik · (rni + r)]eni(r)

e0
i (k, r) =

∑
n

exp[ik · (rni + r)]e0
ni(r)

Φij (k, r) =
∑

n

exp[ik · (rni + r − r0j )]Φni,0j (r)

Wij (k, r) =
∑

n

exp[ik · (rni + r − r0j )]Wni,0j (r).

(7)
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After making use of the Fourier transformation, equations (1) take the form

ei (k, r) = e0
i (k, r) −

∑
j

Φij (k, r) · Λ0
j · ej (k, 0). (8)

The solution of these equations can be readily obtained by proceeding as follows. First,
substitutingr = 0, we obtain homogeneous equations. Then, substituting the solution of
these equations into equation (8), we have

ei (k, r) = e0
i (k, k) −

∑
n

Φij (k, r) · χjn(k)e0
n(k, 0) (9)

whereχij is the matrix of susceptibilities defined as follows:∑
j

(Λ−1
j δij + Φij (k, 0))χjm(k) = δimI. (10)

Reverse motion to the ordinary space is given by the Fourier integral

eni(r, r′) = 1

�

∫
exp[−ik · (rni + r)]ei (k, r) d3k (11)

where� is the volume of the Brillouin zone.
Thus, the microscopic electric field in the vicinity of the microscopic impurities can

be found by integration of the Fourier transform over the Brillouin zone. The Fourier
transforms can be readily calculated by, for example, Ewald’s method. For example, the
transform of the tensor of the dipole–dipole interaction is

Φij (k, r) = 4π

V k̂k̂ − 4π

V
∑
g 6=0

exp(−ig · r)ĜĜ exp

(
− g2

4λ2

)

− exp[−ik · (r − r0j )]
∂2

∂r∂r

′∑
n

erfc(λ|r + rni − r0j |)
|r + rni − r0j | exp(ik · rni) (12)

whereG = k + g, in the second sum(ni) 6= (0j), and the parameterλ has an arbitrary
value which may be chosen on the basis of rapidly converging sums in both the ordinary
and the reciprocal spaces. Note that this parameter is well defined if one wants to take into
account the size of the ions in the lattice. In this case, the second sum in the ordinary space
vanishes.

Now, it is not difficult to calculate the energy of the lattice polarization:

Epol = 1
2

∑
niα

30
iαe2

niα. (13)

Indeed, substituting solution (11) into equation (13), one can see that the summation over
the numbern of the cells can be performed analytically. The final result is

Epol = 1

2�

∑
jα

30
jα

∫
|ejα(k, 0)|2 d3k. (14)

Thus, to calculate the energy of polarization, one should perform the integration of the
squared transform of the microscopic electric field over the Brillouin zone. In the case
when the lattice is polar, this approach seems to be much easier than the ordinary cluster
method because, in the cluster approach, one should use a huge cluster to be sure it is
adequate for the polar crystal lattice and, moreover, one should carry out the calculation of
the electric field at each site and then perform summation (13) over the sites.
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Let us now briefly discuss the case when the ion displacements near the microscopic
impurities are large. Let it hold for the set of the sitesL = {ni}. To take into account the
real displacements, we redefine the unscreened electric field

e0
ni(r) = e0

ni(r) +
∑
L

[Φni,L(r) · Λ0
L · eL(0) − Φni,L(r − 1rL) · ΛL · eL(1rL)] (15)

where1rL is the ion displacement,e0
ni is the unscreened electric field produced by the

microscopic impurities and, by the shifted ions, the tensorΛ0
j is constructed from the

polarizabilities which do not depend on the numbern of unit cells, but the tensorΛnj can
have arbitrary values. Thus, we take into account the ion displacements as well as the
change in the polarizabilities of the ions. In particular, one can consider the case when an
ion is not shifted but has changed polarizability. Note that the atomic displacements should
satisfy the ordinary equilibrium conditions.

Substituting definition (15) into equation (11), one can obtain a set of equations of the
following general form:

eni(r) = Ani(r) +
∑
L

Bni,L(r)eL(0) +
∑

L

Cni,L(r)eL(1rL) (16)

whereAni , Bni,L andCni,L can be readily defined on the basis of equations (9), (11) and
(16). To solve these equations, one should substituter = 0 and r = 1rL, which results
in a set of homogeneous equations. Having found the solution of these equations, one can
then calculate the local electric field at any one of the points of the lattice by means of
equation (16).

Thus, the approach in use allows one to compute the microscopic electric field, produced
by the microscopic impurities, without resorting to the cluster approach. In this method,
the polarization of the whole crystal as well as the interdependence of the polarization of
all the lattice sites are taken into account without making use of both the Mott–Littleton
approach and the continuous-media approximation. This is very important because, as will
be shown later, the asymptotic behaviour of the electric field in the crystal lattice differs
from that in the Mott–Littleton and continuous-media approximations.

Let us now return to the case when the displacements are small but let us turn to the
asymptotic behaviour of the electric field. At a considerable distance from the dipole, only
small values ofk in the integral (11) are important. The Fourier transforms of the tensor
of the dipole–dipole interaction have a particularly simple form near the pointk = 0. Only
the first contribution in equation (12) can be taken into account in this case.

Noting that function (11) is determined by only the direction of the vectork but not by
its modulus, the integral over the modulus ofk in (11) can be performed analytically by
making use of the following formula:∫ 1

−1

∫ ∞

0
exp(−iklt)k2f (t) dt dk = −π

l3
f ′′(0) (17)

wheret = cosθ . Note that the infinite upper limit of the integration overk is justified by
the fact that only smallk contribute to the integral at highl.

To find the derivative in equation (17), we employ equation (12) together with the
definition of susceptibility (10). The latter gives

χ′
t = −χΦ′

t (k, 0)χ

χ′′
t t = −χΦ′′

t t (k, 0)χ − χ′
tΦ

′
t (k, 0)χ − χΦ′

t (k, 0)χ′
t .

(18)
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It is very important that the derivativesΦ′
t andΦ′′

t t for small values ofk do not prove to
depend on the atomic site

V
4π

Φ′
t = ∂

∂(cosθ)
k̂k̂

∣∣∣∣
cosθ=0

V
4π

Φ′′
t t = ∂2

∂(cosθ2)
k̂k̂

∣∣∣∣
cosθ=0

.

(19)

The final result is

eni(r) = 1

2π

∫ 2π

0
µ+

i (ϕ, r)G(ϕ)µj (ϕ, r′)d0j dϕ (20)

where

µ+
i (ϕ, r) =

∑
m

(
δimI −

∑
j

Φij (ϕ, r)χjm(ϕ)

)∣∣∣∣
cosθ=0

µi (ϕ, r) =
∑

j

(
δij I −

∑
m

χjm(ϕ)Φmi(ϕ, −r)

)∣∣∣∣
cosθ=0

(21)

G(ϕ) = 2π2

�l3

(
Φ′′

t t − 2
∑
ij

Φ′
tχij · Φ′

t

)∣∣∣∣
cosθ=0

. (22)

Thus, one can consider the energyE12 of the interaction between two dipoles in the lattice
as the average (over the directions of the unit vectork̂ in the x–y plane) of the matrix
product of the tensors of the effective dipole momentsµ1d1 andµ2d2 and of the effective
(screened) interaction tensorG.

Let us consider the case when the dipoles are located at a crystallographic axis and
are directed along this axis. In this case,µi does not prove to depend onϕ. As a result,
equation (20) takes the form

ezeni(r, r0j + r′) = ezµ
+
i (r)

2〈ε−1
⊥ 〉
l3

· µj(r
′)d0j (23)

whereez is the unit vector directed along thez axis and

〈ε−1
⊥ 〉 = 1 − 2

V
∫ 2π

0
k̂ ·

∑
ij

χij k̂

∣∣∣∣
cosθ=0

dϕ. (24)

The dielectric constant (24) describes the screening of the interaction between the two point
charges in the lattice. In cubic crystals, it also coincides with the macroscopic dielectric
constant. The coefficientµi has in this case the following sense. Let a uniform external
electric field be applied to the crystal. Then,µi is the ratio of the local field on theith site
to the average field. In the simple-cubic lattice, this ratio isµ = (ε + 2)/3. This result is
in accordance with the values obtained in earlier work [3–5].

In the case considered, the following sum rule holds:

4π

V
∑

i

αiµi(0) = ε − 1. (25)

Furthermore, there is the following condition of normalization:

1

V
∫

unit cell

µi(r) d3r = 1 (26)

where the integration is performed over the unit cell.
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Thus, the effective dipole moment can be much greater than the real dipole moment.
However, this holds only if the dipoles are directed along thez axis. In the case when the
dipoles are directed perpendicular to this axis, in the simple-cubic lattice,µ = (ε + 2)/3ε

while G = ε, i.e., the effective dipole moment has a comparatively low value while the
effective interaction between the dipoles is enhanced.

Along similar lines, we have derived an expression for calculating the electric field
produced by the point chargeq0j located at thej th site of the zeroth cell. The dissimilarity
from the previous case is only that the unscreened field must be rewritten in the form

e0
i (k, r) = Wij (k, r)q0j . (27)

At small k, the vectorWij has a particularly simple form

Wij (k, r) = 4π i

V
k

k2
. (28)

To perform the integration in (11), one can use the following formula:∫ 1

−1

∫ ∞

0
exp(−iklt)kf (t) dt dk = −i

π

l2
f ′(0). (29)

The derivative in equation (29) can again be determined analytically by using equations (18)
and (19). The final result is

ei (r, r0j + r′) = 1

2π

∫ 2π

0
µ+

i (ϕ, r)F (ϕ)

∣∣∣∣
cosθ=0

q0j dϕ (30)

where

F (ϕ) = 1

l2

(
k̂′

t −
∑
ij

ϕ′
tχij k̂

)
. (31)

It is seen that, in this case, the electric field does not depend on the atomic site at which
the point charge is located.

It is evident that, if the vectorei is directed perpendicular to thez axis, the electric
field (30) vanishes. In the case, when this vector is directed along thez axis, we have

ezei (r, r0j + r′) = ezµ
+
i (r)

〈ε⊥〉−1

l2
q0j . (32)

Thus, the formulae obtained in this section allow one to calculate the electrostatic field
produced by the point dipole as well as by the point charge in a complex crystal with the
orthorhombic unit cell or in orthorhombic positions. This provides the basis for calculating
the electrostatic field produced by impurities in perovskite-like crystals.

3. Results of the calculation

As a first example, we have chosen potassium tantalate in which phase transition phenomena
at a low concentration of Li ions were observed [1]. Potassium tantalate has a cubic structure
for low temperatures, but it is usually related to the incipient ferroelectrics [8, 9]. The Curie
temperature, obtained in a nominally pure potassium tantalate by extrapolating experimental
data, lies just below 0 K.

The computation was carried out using different values of the dielectric constant that
corresponded to different temperatures and frequencies. We considered three cases. In the
first (I) and second (II) cases, the lattice parameter was taken to be equal to 3.9884Å [8],
which was related to room temperature. The atomic polarizabilities of the potassium ion,
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αK = 1.14 Å3, and of the oxygen atom,αO‖ = 2.44 Å3 andαO⊥ = 0.93 Å3, were taken
from [8]. The polarizability of the Ta atom was chosen so that the calculated dielectric
constant is equal to the experimental value:ε∞ = 5.15 in the first case andε0 = 204 in the
second case [8]. The third (III) case describes the lowest temperatures for which the values
a = 3.9842Å and ε0 = 3840 were employed [9].

The energy of two interacting dipoles is expressed as follows:

E12 = d1γ1
ε + 2

3
812〈ε−1

⊥ 〉ε + 2

3
γ2d2. (33)

In the simple-cubic lattice,γ1 = γ2 = 1. In perovskite-type oxides, these quantities were
determined by interpolation of the results of calculating the energies of pair interactions.

Table 1. The values of the parameterγ obtained for KTaO3.

Case γK γT a γOz γOxy ε

I 0.44 2.93 1.97 0.79 5.15
II −0.21 5.20 3.72 0.24 204

III −0.23 5.28 3.78 0.22 3840

From the data obtained (table 1) we note that the interactions between the dipoles located
on the Ta and Oz sites are the greatest. The enhancement of the interaction between dipoles
in these positions is of the order of the static dielectric constantε0. Thus, the effective
dipole moment in these sites appears to be approximatelyε0 times larger than the real
dipole moment.

Table 2. The values of the parameterγ obtained for La2CuO4: O(1) is the apical oxygen atom
while O(2) and O(3) are the oxygen atoms lying in thea–b plane.

Dipole
Case direction l direction γLa γCu γO(1) γO(2) γO(3) 〈ε−1

⊥ 〉−1 ε

I c c 0.37 1.17 1.11 0.86 0.86
4.49 4.45

I a c 1.70 0.87 0.85 1.24 1.26
I c a 0.38 1.18 1.11 0.89 0.89

4.52 4.49
I a a 1.70 0.87 0.85 1.24 1.27

II c c 0.12 1.28 1.15 0.82 0.82
45.1 23

II a c 4.73 0.84 0.62 2.74 2.72
II c a 0.09 0.97 0.87 0.63 0.63

32.23 45.1
II a a 3.8 0.653 0.48 0.69 0.68

Table 2 lists the calculated values of the parameterγ for the atomic sites of La2CuO4.
Two cases were considered. The first case employed the atomic polarizabilitiesαLa =
1.04 Å3, αCu = 0.001 Å3 and αO = 2.46 Å3. These values are consistent with the
high-frequency dielectric constantε∞ = 4.5. The second case corresponded to the static
dielectric constantsεc = 23 andεa,b = 45 [10]. In the latter case, the oxygen polarizability
was chosen so that the calculated static dielectric constants were equal to the experimental
values. The oxygen polarizabilities proved to equal 4.369Å3 along thec axis and 3.996̊A3

in the a–b plane.
Table 3 shows the results obtained for YBa2Cu3O6. Again, two cases were considered.

The first case corresponded to high frequencies while the second case was related to low
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Table 3. The values of the parameterγ obtained for YBa2Cu3O6: the same notation as in
table 2 is used; the Cu(1) atom belongs to the Cu–O chain while the Cu(2) atom is related to
the CuO2 layer.

Dipole
Case direction l direction γY γBa γCu(1) γCu(2) γO(1) γO(2) γO(3) 〈ε−1

⊥ 〉−1 ε

I c c 1.49 0.65 2.48 0.61 0.92 0.75 0.75
3.8 2.21

I a c 0.72 1.39 0.07 1.30 1.14 1.49 1.19
I c a 1.38 0.63 2.23 0.58 0.84 0.71 0.71

2.9 3.8
I a a 0.67 1.31 0.06 1.21 1.07 1.40 1.11

II c c 1.58 0.32 3.65 0.45 0.95 0.59 0.59
90.2 3.73

II a c 1.33 4.37 −2.09 6.96 2.58 6.10 5.49
II c a 0.51 0.09 1.21 0.14 0.30 0.18 0.18

18.7 90.2
II a a 0.45 1.48 −0.71 2.35 0.87 2.06 1.85

frequencies. The electronic polarizabilities were equal to 0.001Å3, 1.94 Å3 and 0.001Å3

for the Y, Ba and Cu ions, respectively.
The oxygen polarizabilities were chosen in the following manner. First, we

approximated the results of the shell-model calculations carried out for YBa2Cu3O7 in [11]
by the point-polarizable-ion model. We found the oxygen polarizabilitiesαOa = 2.22 Å3,
αOb = 2.0465 Å3 and αOc = 2.0095 Å3 to be suitable for this purpose. Therefore,
ε∞a = 3.66, ε∞b = 3.58 andε∞c = 3.18. Then, the average polarizabilityαOab = 2.12 Å3

in the a–b plane andαOc = 2.00 Å3 were employed for calculating the local fields in
YBa2Cu3O6. The oxygen polarizabilities in the second case were chosen along similar lines.
It was found for YBa2Cu3O7 that αOa = 4.0427Å3, αOb = 3.912 Å3 andαOc = 4.198 Å3

andε0a = 15.497,ε0b = 13.68 andε0c = 16.77 respectively, which was in accordance with
the values obtained in [11]. For YBa2Cu3O6 we tookαOab = 4.0 Å3 andαOc = 4.2 Å3. This
led to the following results:εab = 18.757 andεc = 90.206. The large values of the static
dielectric constants are in agreement with numerous experiments showing ferroelectric-like
properties in layered perovskite oxides. Furthermore, the coefficientsγi were found to be
not very sensitive to the value of the dielectric constantε0 at largeε0.

4. Discussion

The gigantic enhancement of the interaction between microscopic dipoles in the polar lattices
of cubic and layered perovskite-type oxides can evidently lead to the formation of polarized
regions. Indeed, they were observed in many research studies. An explanation of this
phenomenon has been given in a few investigations (see the reviews in [1, 2]) where it was
supposed that the indirect interaction between dipoles was a result of their interaction with
a soft ferroelectric (optical) mode. This interaction lowers the frequency of the soft mode
and, as a consequence, can lower the crystal symmetry. The evaluation of the coefficient
of the enhancement of the interaction between microscopic dipoles in KTaO3 was carried
out in [1] in the following way. First, using Slater’s [6] formulae, the local electric field
produced by the ferroelectric polarization was calculated at an atomic site. Then, the ratio
γ of this field to 4πP/3 was found. Thereafter, the formulae obtained in [3] for calculating
the electric field between microscopic dipoles in the simple-cubic lattice were multiplied by
γ .

Our computations were carried out in a different manner. However, the values of|γ |
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proved to be close to the values obtained in [1]. We found for the K site thatγ = −0.21
and for the Ta siteγ = 5.25. These values are in qualitative accordance with those obtained
in [1, 12]: γ = −0.1 for the K site andγ = 5 for the Ta site [13].

Experiments on ESCR showed for the solution KTaO3:Li that the value ofγ for the
Li position was about 0.1 [1]. This result is somehow lower than the value which we
obtained in our computations but there are good reasons for this. Indeed, the electric field
which we have calculated (and also the field calculated in [1, 12]) is produced by the point
dipole but, according to experimental data, the Li ion off-centre displacement is about
1.35 Å [8]. Our preliminary results and the condition of normalization (26) show that the
Li ion displacement is accompanied by a change in the interaction. We believe that this
would lowerγ . Similarly, a study of the ESCR spectrum of the Fe3+–V0 complex yielded
γ = 0.05 [13, 14] whereas this value is two orders lower than the valueγ = 5 obtained
for the Ta site. In fact, the computation was carried out for an ideal (no vacancies) lattice
structure. The absence of the oxygen ion near the substitution could cause the decrease in
γ . Rigorous consideration of such cases will be dealt with separately.

The huge values of the effective dipole moments for microscopic impurities in
ferroelectrics can lead to many other interesting phenomena. One of them is the even field
current. This phenomenon is as follows. If one applies to a ferroelectric monodomain crystal
(or polarized ceramic) a voltage perpendicular to a ferroelectric axis, then current arises not
only in the direction of the electric field but also along the polar axis, i.e. perpendicular to
the direction of the voltage. This phenomenon was explained on the basis of the anisotropic
scattering of hot electrons by dipole impurities [15]. However, as the hot electrons in
dielectrics have very small wavevectors, their scattering by microscopic dipoles cannot
explain the appearance of a current of the order of a few per cent. In connection with
this, it was suggested in [16, 17] that a non-linear dependence of the field on polarization
be taken into account. In fact, as is seen from the data obtained, anisotropic scattering of
hot electrons can arise from the gigantic enhancement of the electric field of a microscopic
dipole.

We wish to call attention to the following. The enhancement of the electrostatic field of
microscopic impurities takes place only at definite positions in crystal. Averaging the field
over the unit cell reduces the expression for calculating the field to the ordinary Coulomb
law written for continuous media.

In connection with the discovery of the high-temperature superconductivity in
perovskite-like oxides, many models have appeared in which attempts were made to study
the consequences of the high polarizability of the lattice. In particular, in [18, 19], it was
suggested that the localization of a hole on the oxygen ion could lead to an increase in
the radius of the ion and, as a consequence, to its displacement from the usual position.
Attraction between microscopic dipoles, sufficiently enhanced by the lattice polarization, can
lead, in the authors’ opinion, to the formation of local pairs. The results of our computations
support the idea of gigantic enhancement of the interaction between the microscopic dipoles
located on the oxygen sites.

Similar to the model described, it was shown in [20] that the two oxygen ions O− near
an acceptor substitution in KTaO3 are shifted from the centrosymmetric positions so as to
form a bipolaron. In our opinion, the main causes of this are the decrease in the atomic
radius and the large enhancement of the dipole–dipole interaction.

In recent years, paired holes arising by means of dipole excitations (dipolarons) have
been extensively studied [21]. The results of our computations support the idea of
enhancement of the monopole–dipole interaction in perovskite-like lattices. However,
according to our analysis, the charge–charge interaction, as in the simple-cubic lattice [3],



514 S A Prosandeyev and A I Riabchinski

at a widely separated distance is described by the ordinary Coulomb law, i.e. the unscreened
field must be divided byε0. Apparently, enhancement of the field could arise at shorter
distances.

It was shown in [22] that the oxygen vacancy in perovskite-type oxides can, under
certain conditions, be a dipole centre. The experimental evidence that, in KTaO3, there
are dipole centres the concentration of which is correlated with the degree of oxidation
(reduction) of the sample is provided in [23]. From the data obtained, we note that the
appearance of an ordered state of the oxygen vacancies in perovskites can be expected.
In support of this conjecture, the phase transitions from the cubic phase to the tetragonal
phase were experimentally observed for LaCuO3−δ and BaPb1/4Bi1/4O3−δ [24, 25] for an
increased number of oxygen vacancies. However, there are other possible explanations of
these facts. The oxygen vacancies are known to increase the volume of crystal which can
trigger instability of the lattice [26].

Finally, let us pay attention to the fact that not only can the displacement of ions give
rise to the appearance of the dipole moments in lattice but also dipoles may arise as a result
of the dipole excitations of electrons on the same atom or between two atoms [21]. So,
the charge-transfer excitation between the oxygen atom and the metal atom results in the
formation of a dipole located anywhere between these two ions. The interaction between
such electronic excitations in the polar lattice is sufficiently enhanced. As a result, under
certain conditions, local pairs could arise. In similar way, the dipole arising from the
charge-transfer excitation could attract a point charge, e.g. a hole.

The necessary condition for these phenomena is that the dipole excitation is localized
in ordinary space. The electron (hole) localization can be a consequence of the electron
correlation or of the strong electron–phonon interaction. It was shown numerically that
the cluster approach is capable of describing the electron localization due to its interaction
with the lattice polarization in alkali halides [27–30], binary oxides [31] and SiO2 [32, 33].
However, we expect that, when applying the cluster approach to much more polar ionic
systems such as the perovskite-type crystals, difficulties from the limited cluster size would
arise. In this connection, the method proposed in the present paper could be very useful for
calculating the energy of polarization near a microscopic impurity. An alternative approach,
based on the Green-function method, was proposed in [34, 35]. In this method the shell
model was used instead of the point-polarizable method. It should be remembered that our
approach was capable of giving analytical results.

5. Conclusions

In the present paper, we have formulated a method for calculating the local electric fields
produced by microscopic impurities in polar complex ionic lattices. This method allows
one to calculate the electric fields and the energy of the lattice polarization without resorting
to the cluster approach. Rather, integration over the Brillouin zone is to be performed for
these purposes.

At a considerable distance, the energy of the interaction between microscopic defects was
shown to be represented as the matrix product of the tensors of the effective dipole moments
and of the tensor of the effective interaction. The latter is defined by the macroscopic
dielectric constant while the former proves to be markedly enhanced. This is a consequence
of the sum rule obtained in the present work. In the particular case of the simple-cubic
lattice, the results obtained coincide with those published earlier [3–5]; the enhancement of
the real dipole moment is(ε + 2)/3.

Thus, the asymptotic behaviour of the electric field produced by the microscopic
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impurities strongly differs from the field in the Mott–Littleton model as well as in the
continuous-media approximation. We call attention to the fact that the method proposed
does not use these models.

The calculations performed have shown that the effective dipole moment is markedly
enhanced both in cubic KTaO3 and in layered La2CuO4 and YBa2Cu3O6. Moreover, we
have found that the changes in the atomic polarizabilities, leaving the dielectric constant
unchanged, does not lead to a change in this result. Thus, the enhancement of the dipole–
dipole and monopole–dipole interactions is not a consequence of the appropriate choice of
parameters. This is a general result which is based on the sum rule.

Where it was possible, we have carried out a comparison of our quantitative results
with those obtained with the soft-mode model and by experiment. We have found that our
results, obtained for KTaO3, agree with the experiment and calculation by Vugmeister and
Glinchuk [1] very well. However, it should be emphasized that Vugmeister and Glinchuck
calculated the interaction of a dipole with a soft ferroelectric mode while we made use
of the other approach. The reason for the qualitative coincidence of our results is, in our
opinion, as follows. We showed that the enhancement coefficientµi of the dipole moment
acts in a sense as the ratio of the local field on theith site, produced by the uniform external
electric field, to the average field. Thus, at a considerable distance from the microscopic
dipole, the polarization of the lattice looks like the ferroelectric distortion of the crystal.
This is why the results obtained with the soft-mode model coincide with our straightforward
calculations.

We have predicted a large enhancement of the effective dipole moment of microscopic
impurities in layered copper oxides that can be checked by the ESCR method. We showed
that the even field currents in ferroelectrics could be the result of the dipole moment
enhancement. Our data supports the idea of a strong interaction between two holes localized
on two oxygen ions in perovskite-type lattices.

It can be inferred from the sum rule and the norming condition that, in the unit cell, there
are special points at which the electric fields are mostly enhanced. Thus, it is more probable
that the greatest enhancement is achieved in complex lattices because, in this case, the unit
cell comprises many atoms occupying different points in the cell. In this respect, the oxides
of the perovskite family are peculiar. Their unit cells are very complex and, furthermore,
the polarizabilities of the atomic sites are very large. As a consequence, the enhancement
coefficient, for example, for the Ta site in KTaO3, is gigantic and equals 5.25(ε + 2)/3.

We also call attention to the possibility of checking cluster calculations by means of the
comparison of their results with the analytical expressions obtained in the present paper.
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